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Abstract

bservers viewed a simulated airport runway landing scene with an obstructing aircraft

fi
on the runway and rated the visibility of the obstructing object in varying levels of white

xed-pattern noise. The effect of the noise was compared with the predictions of single and
s

p
multiple channel discrimination models. Without a contrast masking correction, both model
redict almost no effect of the fixed-pattern noise. A global contrast masking correction

n
i
improves both models’ predictions, but the predictions are best when the masking correctio
s based only on the noise contrast (does not include the background image contrast).
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1. Introduction

f
b

Object detection typically involves search and pattern recognition in a range o
ackgrounds. Visual object detection is fundamentally limited by background-induced

t
m
contrast masking. When the object is present or absent in a constant background, contras

asking can be measured as the discriminability between two images. We are evaluating the

i
ability of image discrimination models to predict object visibility with a fixed background
mage. If the models are successful, they predict the upper limit of observer performance in

an object detection task.

Ahumada, Rohaly, and Watson (SPIE 1995) applied discrimination models to object1

r
p
detection in natural backgrounds. We reported that the detectability of tank targets was bette
redicted by a multiple channel model than by a single channel model. We then added a

s
f
simple correction for masking based on visible contrast energy. It improved the prediction
or both models and equalized their performance. 4

*
hhhhhhhhhhhhhhh

2,3,
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d
Some object detection situations involve noisy displays. Here we measure object

etectability in a complex image masked by fixed-pattern noise. We compare these
e

s
measurements with discrimination model predictions. Without the masking correction, th
ingle channel model predicts no effect of noise and the multiple channel model predicts

y
p
masking only by the noise in the channels affected by the object. So, neither model correctl
redicts the effect of the fixed-pattern noise. With the masking correction, both models’

s
b
predictions are improved. The predictions are even better when the masking correction i
ased only on the noise contrast and does not include the background image contrast.

2.1 Methods

2. Experiment

2.1.1 Stimuli. Two digital images of a simulated airport scene were generated. Image
nI , shown at the top of Figure 1, has an obstructing aircraft on the runway. Image I , show1 0

a
s
in the middle of Figure 1, is the same image without the obstructing aircraft. We used
ingle fixed-pattern white noise mask N with uniformly distributed pixel values. Images for

f
the experiment were constructed from these images by adding the background image, a
raction p of the difference between the background and the object images, and a fraction q

of the noise image,

I = I + p (I − I ) + q N + (1−q ) Ndd . (1)

N

p , q 0 1 0

dd is the mean of the noise image. A fraction of Ndd is added to keep the mean luminance
r

t
constant. Images were generated for the six p values 0, 0.05, 0.10, 0.20, 0.40, and 1, and fo
he q values 0, 0.25, 0.50, and 1.0. The image at the bottom of Figure 1 illustrates the case

y
c
of p = 1 and q = 0.5. The 128×128 pixel gray-scale images were presented on a 15 inch Son
olor monitor whose luminance in cd/m was closely approximated by2

2.4L = 0.05 + ( 0.024 d ) , (2)

s
where d is the digital image pixel value. The mean luminance of the images and surrounding
creen region was about 10 cd/m . The viewing distance of 127.5 cm and the image size of

6

2

.0 cm give a viewing resolution of 47.5 pixels per degree of visual angle. The plane/runway

d
scene thus subtended 2.7 deg visual angle, the plane alone fit in a rectangle 0.78 deg by 0.17
eg of visual angle (37 horizontal and 8 vertical pixels). It affected a total of 96 pixels.

,
g
When an image was not present, the screen was filled with random, uniformly distributed
ray scale pixels. Because the display had only 32 different levels of gray scale (IBM-PC

c
compatible VGA display mode) the no-noise condition was run at twice the digital image
ontrast to allow more dynamic range. The image duration was 1.0 second.

f
2

2.1.2 Observers. Four female observers, aged 18 to 37 years, with corrected acuity o
0/20 or better were tested.

2.1.3 Procedure. The observers were asked to rate each image on a 4 point rating scale
according to the following interpretation:

1-Definitely did not have a plane.

3
2-Probably did not have a plane.
-Probably did have a plane.
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r
4-Definitely did have a plane. In addition, the observers were asked to try to use the 4

esponse categories with roughly equal frequency.

r
o

Within a block of 60 trials, the mask noise level q was held constant, while the fou
bject/background p levels occurred randomly (with probability 0.25). Table 1 shows the

four values of p used at each q value (the coefficient determining the noise level).
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
iTable 1 - Signal level values p used at each noise level value qiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
iq p ’siiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

0
0 0 0.05 0.1 0.2
.25 0 0.05 0.1 0.2

4
1
0.5 0 0.1 0.2 0.

0 0.2 0.4 1.0 i

c
c
c
c
c
c
cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc

c
c
c
c
c

cc
c
c
c
c
c
c

4
L
Groups of four repetitions of the four noise levels were independently sequenced using 4×

atin squares. Observers 1 and 2 completed 16 repetitions of each noise level, Observer 3

i
completed 8 repetitions, and Observer 4 completed 10 repetitions in 5×5 Latin squares,
ncluding a no-noise condition at the same contrast as the noise conditions.

2.2 Data analysis

2.2.1 Method. For a given noise level, the distance d′ in discriminability units from
l

T
each object image to its non-object image was measured in the context of a one-dimensiona

hurstone scaling model. The scaling model has the following assumptions:

1

5

. The presentation of an image generates an internal value that is a sample from a normal
distribution with unit variance.
2a. The mean of the distribution generated by a background image I is zero.0

1 .
2
2b. The mean of the distribution generated by an original object image I is d′
c. The mean of the distribution generated by an image I is p d′ .p

e
4
3. The observer has 3 fixed criteria that are used to categorize an internal value to one of th
responses.

The scaling model for this experiment has 4 d′ parameters and 3 category boundaries for each

e
observer. Parameters were estimated by the method of maximum likelihood separately for
ach block.

2.2.2 Experimental results. Median d′ estimates for each observer and for the 4 noise
levels are given in Table 2.
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Table 2 - Median experimental discriminability indices d′ iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
noise level q 0 0.25 0.5 1 iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Observer 1 18.5 11.9 6.6 3.3

1
O
Observer 2 24.9 11.6 8.8 4.

bserver 3 24.4 9.5 8.8 5.8
2iObserver 4 28.4 15.4 9.0 5.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

iGeometric mean 24.8 11.9 8.2 4.5iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

s
e
The standard deviation of an individual score in decibels (dB = 20 × the log of the score) i
stimated to be 1.3 dB, based on the observer by noise level interaction, which has 9 degrees

l
of freedom. This leads to 95% confidence intervals of ±1.4 dB for the means for each noise
evel. Figure 2 plots the data of Table 2 with the confidence intervals about the means.

e
n
Observer 4 had a median d′ of 18.4 for the no-noise condition at the same contrast as th
oise conditions, only slightly higher than her d′ value of 15.4 for the q = 0.25 condition.

t
o
The large difference from the q = 0 and the q = 0.25 conditions is seen to be mainly an effec
f the lower signal level in the noise conditions.

s

3.1 Algorithms

3. Model

3.1.1 Multiple channel model. The multiple channel model is based on the Cortex
stransform of Watson. It is similar in spirit to his original multiple channel model, and i6 7

similar in detail to others based on the Cortex transform.8,9,10

The multiple channel model calculation for a pair of images (I and I ) has the
f 1 0

0 1
ollowing steps. The images I and I are converted to luminance images by the calibration

d
t
function of Equation (2). The images are converted to luminance contrast by subtracting an
hen dividing by the background image mean luminance Ld ,

j

0

j 0 0I ← (I − Ld ) / Ld . (3)

c
The operations on the image indicate the operation applied separately to each pixel. A
ontrast sensitivity function (CSF) filter S is then applied to the two contrast images.

)I ← F [S F [I ]] , (4j
−1

j

w −1here F and F are the forward and inverse Fourier transforms. Next the Cortex transform
lis applied to the images resulting in coefficients C , where the index k ranges over spatiaj , k

k l
f
frequency, orientation, and spatial location. The detectability d contributed by the k th spatia
requency, orientation, and position is then computed as the absolute value of the difference in

t
the Cortex transform coefficients, masked by the background coefficient if it is above
hreshold.

d = e C − C e , if C ≤ 1.0 ,

k

k 1, k 0, k 0, k

1, k 0, k 0, k
0.7

0, kd = e C − C e / eC e , if C > 1.0 . (5)

Finally, d′ is given by a Minkowski sum of the individual contributions with summation
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exponent β,

d′ = ( d ) . (6)Σ
k

k
β 1/β

k .For the case that β = ∞, the result is the largest of the d

3.1.2 Single channel model. For the single channel model, the steps are the same
through the image filtering, then the filtered image values are used to compute

d = e I − I e , (7)

w

k 1, k 0, k

here the index k now refers to image pixels. Equation (6) is then used to obtain d′ .

l
p

3.1.3 Contrast normalization. Without the correction factor, the single channel mode
redicts no contrast masking at all and the multiple channel model only predicts masking

t
e
within the channels affected by the signal. Recent work demonstrates masking by contras
nergy in channels not containing the signal. New versions of the multiple channel models

i

11

ncorporating lateral interactions among cortical unit channels to account for between-channel
masking have been developed. A model similar to theirs would result by replacing12−15

Equation (5) with

d = eC − C e
( c + c eC e )

h chhhhhhhhhhhhhhhhhhhhhhhh , (8)k
0 k , k′ 0

1, k 0, k

0
a

k′
k , k′ 0, k′

a 1/a

0

Σ
0

0 k ,k′where c and a are constants, c represents the weight of the masking of channel k′ on
fchannel k , and a represents the growth of that masking with the activity in channel k′ . Ik ,k′

k ,k′ e
a
we make the simplifying assumptions that the c are all equal and sum to unity, that th

= 2, and a = 2, the result is that the factor multiplying the difference term is no longer a
f

k ,k′ 0
unction of k and can be factored out of the Minkowski metric Equation (6). Also, the

m
o
Cortex transform has the property that the sum of squares of the coefficients equals the su
f squares of the image values, so the simplification assumptions result in the d′ prediction

formula,

d′ = d′
c + c

h chhhhhhhh , (9)
0

2unmasked

0
2√dddddd

w unmaskedhere d′ is computed from the unmasked differences, c is the RMS background image
contrast passed by the CSF filter, and c is a parameter representing the contrast level at0
which the masking becomes effective. To compute c , the CSF is normalized to unity at its

e
peak value. Instead of dealing with the additional computational complexity and parameter
stimation problems of Equation (8), we will simply use Equation (9) to correct the

3

predictions of the single and multiple channel models.

.2 Model parameters

The model parameters used are those that proved to be best in previous studies. The
16

1−4

s
h
CSF filters were calibrated to agree with the CSF formula developed by Barten. The filter
ave a difference of Gaussian form,
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)S ( f ) = a exp − a exp , (10c
−( f / f )

s
−( f / f )2

c
2

s

sw c s chere a and a are the center and surround amplitude parameters and f and f are the
r

t
center and surround frequency cutoff parameters. Table 3 gives the CSF and β parameters fo
he multiple channel and the single channel models. The amplitude parameters have the

c
dimensions of JND’s per unit contrast and the cutoff parameters have the dimensions of
ycles per degree of visual angle.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
i Table 3 - Model parametersiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
channels β a f a /a f /fc c s c c s iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
multiple 4 15.5 20.8 0.77 5.6

9i single 4 18.5 16.4 0.68 7.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c

c
c
c
c

c
c
c
c

cc
c
c
c
c

3.3 Model predictions and results

3.3.1 Predictions without a contrast masking correction. The model predictions for
d′ without a contrast masking correction given in Table 4 for each of the four noise levels.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
iTable 4 - Model d′ ’s without a contrast masking correctioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
inoise level q 0 0.25 0.5 1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

s
multiple channel 4.0 2.3 2.2 1.9
ingle channel 24.5 11.5 11.5 11.8i

c
c
c
c
cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic

c
c
c

cc
c
c
c
c

h
m
Figure 3 shows the predictions of Table 4 plotted with the mean observer results. Bot

odels correctly predict the difference between q = 0 and q = 0.25 caused by scaling the down

b
the aircraft image to make room for the noise. The single channel model predicts no masking
y the noise. The multiple channel model predicts very little masking by the noise. Table 5

m
shows the sensitivity scale factors needed to equalize the average log predictions of the

odels and the observers. It also shows the average error of prediction in decibels using the

m
scale factor and an F statistic representing the statistical goodness-of-fit of the error. The

ultiple channel model averages a factor of 4 too insensitive, while the single channel
e

m
average sensitivity is within the range of that of the observers. The underprediction of th

asking effects causes the errors to be large. Both F’s are highly significant, since the 99.9
percentile of the F distribution with 3 and 9 degrees of freedom is 13.9.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
iTable 5 - Model fits without contrast masking correctioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
i model scale factor error, dB Fiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

multiple channel 4.1 3.5 30.5
single channel 0.72 4.0 38.5i

c
c
c
c
cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic

c
c
c

cc
c
c
c
c

′
v

3.3.2 With contrast masking correction. RMS contrast values for normalizing the d
alues are shown in Table 6 for each of the 4 noise plus background images, filtered by the

CSF for each model.
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Table 6 - RMS image contrast iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

noise level q 0 0.25 0.5 1 iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
multiple channel 0.136 0.076 0.098 0.158

6isingle channel 0.150 0.079 0.093 0.13iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c

c
c
c
c

cc
c
c
c
c

tFigure 4 shows the predictions of Figure 3 corrected with a c of 0.04 and the RMS contras0
s

p
values of Table 6. Now both models predict the effect of the noise better when the noise i
resent, but they predict too much masking of the target by the image alone. Table 7 shows

p
the goodness-of-fit measures as in Table 5. The scale factors show that now both models
redict too much masking.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
iTable 7 - Model fits with contrast masking correctioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
i model scale factor error, dB Fiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

multiple channel 12.2 3.3 25.3
single channel 2.1 3.8 34.7i

c
c
c
c
cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic

c
c
c

cc
c
c
c
c

t
o

3.3.3 Contrast masking correction based on noise alone. The poor fit above is wha
ne might expect from using an image-wide estimate for image masking while the runway

t
t
region has little contrast variation. The values of Table 6 can be decomposed to show tha
he RMS visible contrast from the full (q = 1) noise alone is 0.144 for the multiple channel

c
model and 0.114 for the single channel model. Figure 5 shows the predictions of Figure 3
orrected with a c of 0.04 and the noise component of the RMS visible contrast. Now both

m
0

odels fit well, with a slight error in the direction that would result from a small image
s

h
masking effect. Table 8 shows the goodness-of-fit measures as in Table 5. Now both model
ave scale factors close to unity and the single channel model fits the noise effect quite well.

a
The multiple channel F now barely exceeds the 99th percentile of the F distribution (6.99),
nd the single channel F is just above the 90th percentile (2.81).

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Table 8 - Model fits using only noise in the contrast masking correctioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

model scale factor error, dB F iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
multiple channel 1.30 1.7 7.02

4i single channel 1.16 1.1 2.8iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c

c
c
c
c

cc
c
c
c
c

T

4. Discussion

he improvement in the model predictions resulting from limiting the contrast masking
e

c
correction to the noise, suggests that the contrast masking correction should be based on th
ontrast in a smaller region containing the target object. We had success before with the2−4

n
p
correction based on the same sized image, and experiments measuring contrast effects o
erceived contrast indicate considerable spatial spread. Current models extend the19−22 12−15

l
f
masking interactions only to channels differing in orientation at the same location and spatia
requency. Also recent attempts to measure contrast masking by a surround masker found

none. We currently recommend that the contrast masking correction be based on an23,24

estimate of the image contrast in the immediate region of the target object.
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The results demonstrate that the single channel model with an appropriate contrast
n

c
masking correction can outperform the multiple channel model with or without a general gai
ontrol. Although a multiple channel model with inter-channel interactions might do better in

a
this situation, it probably would require more strongly oriented signals and maskers to obtain

benefit for the extra calculations. One problem with the contrast masking correction and the

T
multiple channel model is that contrast in the signal channels contributes to masking twice.

he multiple channel model might be the better of the two with the correction if, for example,

r
the within-channel masking exponent and the correction exponent were both lowered. The
esults here show that even though the single channel model does not predict the details of

eoriented contrast masking, such as the results of Foley, it can be a useful alternative to mor11

complicated models.
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Figure 1. (Top) Airport scene with an obstacle aircraft on the runway.
(Middle) The same scene without the aircraft.
(Bottom) The aircraft scene (p=1) masked by the noise at q=0.5.



Figure 2. Object detectability data from 4 observers for 4 noise levels.

Figure 3. Predictions of scaled models without contrast masking correction.
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Figure 4. Predictions of scaled models with the contrast masking correction.

Figure 5. Predictions of scaled models with the contrast masking correction
 based only on the noise.
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